

ESHG

Expanded Clinical and Genetic Characterization of Autosomal Recessive HMGCR-Related Limb-Girdle Muscular Dystrophy

Aboulfazl Rad^{1*}, Stephany El-Hayek^{2*}, Sahar Sedighzadeh^{3,4}, Gozde Yesil⁵, Sandra Sabbagh⁶, Mohammad Shahrooei^{4,7}, Pratibha Nair², Asuman Gedikbaşı⁸, Sami Bizzari², Murtadha Ali¹, Eliane Chouery⁹, Cybel Mehawej⁹, Ayca Aslanger⁵, Pejman Rohani¹⁰, Meisam Sharifzadeh¹¹, Sinan Kahraman⁵, Javad Mohammadi-asl¹², Mahdiyeh Behnam^{13,3}, Sandra Corbani⁹, Volkan Karaman⁵, J. Andoni Urtizberea¹⁴, Henry Houlden¹⁵, Reza Maroofian¹⁵, Gabriela Oprea¹, Andre Megarbane^{9,16}

¹Arcensus GmbH, Rostock 18119, Germany.²Centre for Arab Genomic Studies, Hamdan bin Rashid Foundation for Medical Genetics, Istanbul university.⁶ Division of Neuro-Pediatrics, Hotel-Dieu de France Hospital, Beirut, Lebanon⁷ Department of Medical Genetics, Istanbul university.⁶ Division of Neuro-Pediatrics, Hotel-Dieu de France Hospital, Beirut, Lebanon⁷ Department of Microbiology, Immunology, and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium.⁸ Institute of Child Health, Department of Pediatric Basic Sciences, Division of Medical Genetics, Subtrition and Metabolism Laboratory, Istanbul Medical Faculty.⁹ Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medical Sciences.¹⁰ Pediatric Gastroenterology and Hepatology Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences.¹¹ Pediatrician / Pediatric intensivist Department of Pediatric Intensive Care Children Medical Center Tehran University of Medical Sciences.¹² Noor-Gene Genetic Laboratory, Ahvaz, Iran.¹³ Student Research Committee, Semnan University of Medical Science, Semnan, Iran.¹⁴ Institut de Myologie, Paris, France.¹⁵ Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.¹⁶ Institut Jérôme Lejeune, Paris, France.*These authors contributed equally to this work. **Corresponding Author** Andre Megarbane, Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Lebanon; andre.megarbane@lau.edu.lb

INTRODUCTION

Autosomal recessive limb-girdle muscular dystrophy type R28 (LGMDR28; OMIM #620375) is a recently identified subtype of limb-girdle muscular dystrophy with 15 individuals from six unrelated families carrying biallelic variants in the *HMGCR* gene reported to date ^{a, b}. Here we describe 10 individuals from five unrelated Middle Eastern families diagnosed with LGMDR28, all carrying homozygous *HMGCR* variants.

RESULTS

Five unrelated families presenting with a variety of clinical indications were aggregated from three different centers by direct communication or via GeneMatcher.

Family 1: Three siblings with initial symptoms, including proximal and axial muscle weakness and fatigue, appeared between the ages of 13 and 14 years.

Family 2: One child, soon after achieving independent ambulation, parents noticed muscular weakness and the child tired very quickly.
Family 3: One child with limb myopathy at birth, at age 3, muscle biopsy findings showed myopathic atrophy with multiple dispersed degenerative/regenerative fibers, and EMG findings revealed myopathic process involving mostly proximal muscles of lower limbs.
Family 4: Index at 1 month of age exhibited diminished deep tendon reflexes and mild muscle atrophy. He was admitted to the hospital due to significant hypotonia, severe congenital myopathy, and respiratory distress, which necessitated his reliance on a ventilator for adequate breathing support.
Family 5: The proband was a 6-year-old male who showed neuromotor retardation, hypotonia, and decreased muscle strength. He had a history of sucking difficulties.

Table 1. Clinical	features of	patients and	d genetic fin	dings in our	cohort				
		Family 1		Family 2	Family 3 Famil		Family 4	Family 5	
Features	F1-11:4	F1-II:3	F1-II:1	F2-II:4	F3-II:1	F3-II:2	F4-II:2	F5-IV:4	F5-IV:6
Country of Origin	Lebanon	Lebanon	Lebanon	Lebanon	Iran	Iran	Iran	Turkey	Turkey
Equily History	Ves	Vos	Ves	No	Yes	Yes	No	Yes	Yes
Gender	Male	Female	Male; deceased (respiratory failure)	Male	Female	Male; deceased (respiratory and liver failure)	Male, deceased (respiratory failure)	Male	Female
Ochder									
Age at onset (Years)	14	13-14	14	2,5	At birth	At birth	1 month	N/A	N/A
Age at molecular diagnosis (Years)	28	34	N/A	15	13	9	3 months	6	9
Consanguinity	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Gower's sign	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Yes	yes
Muscle atrophy	Severe	Severe	Severe	Severe	No	No	Mild	Yes	Yes
Calf Hypertrophy	No	No	N/A	Yes, mild	No	No	N/A	Yes	Yes
Proximal Weakness	Yes	Yes	Yes	Yes	Yes, mild	Yes, mild	No	Yes	Yes
Avial Maakpass	Vac	Voc	Voc	Voc	Voc	Voc	No	Vac	Voc
AXIOI WEOKNESS	res	res	res	tes	res	res	INO	res	res
Lumbar Lordosis	Yes	Yes	N/A	Yes	No	No	No	No	No
Scoliosis	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes
DTR	No	No	N/A	No	No	No	Diminished	No	Diminished
Gait Disturbance	Severe	Severe	Severe	Severe	Severe	Severe	N/A	No, tip toe walking	Yes and tip to walking
Age of loss of ambulation	25 years	27 years	25 years	N/A	N/A	9 years	N/A	No	No
Wheelchair use	Yes	Yes (from age 20)	Yes	No	No	Yes	No	No	No
Myalgias	Yes	Yes	N/A	No	Yes	Yes	N/A	No	Yes
Respiratory involvement	Yes, rigid chest, vital capacity <50%, tracheotomized	Yes, tracheotomized	Yes, respiratory failure	No	Yes, mild	Yes, respiratory failure	Yes, respiratory failure	No	No
CK levels	1200 U/L	<u>N/A</u>	N/A	6000 U/L	2/00 U/L	/000 U/L	N/A	9000 U/L	3022 U/L
Disease progression	Fast progressive	Fast progressive	Fast progressive	Moderate progressive	Stable	Fast progressive	Fast progressive	Slow, stable	Slow
HMGCR variant cDNA (NM_000859.2)	c.2519G>A	c.2519G>A	N/A	c.2519G>A	c.2519G>A	c.2519G>A	c.1784G>A	c.1522_1524del	c.1522_1524de
Protein (NP_00850.1)	p.(Arg840Gln)	p.(Arg840Gln)	N/A	p.(Arg840Gln)	p.(Arg840Gln)	p.(Arg840Gln)	p.(Arg595His)	p.Ser508del	p.Ser508del
Zvaositv	Hom	Hom	Hom	Hom	Hom	Hom	Hom	Hom	Hom

20 37 57 87 113 157 179	e 222 443 467 492 5	1 I I 08 546 595 6	23 822 840
Transmembrane region	Sterol-sensing domain of SREB	BP cleavage-activation	Hydroxymethylglutaryl-coenzyme A reductase
В	p.Ser508del	p.Arg595His	p.Arg840Gln
Variant	LSEPS - LQYLP	RGPVVHLPRAC	ARQLAQIVCGT
Human	LSEPSSLQYLP	RGPVVRLPRAC	ARQLARIVCGT
Chimp	LSEPSSLQYLP	RGPVVRLPRAC	ARQLARIVCGT
Rat	LAEPSSLQYLP	RGPVVRLPRAC	ARQLARIVCGT
Mouse	LAEPSSLQYLP	RGPVVRLPRAC	ARQLARIVCGT
Dog	LPEPSSLQYLP	RGPVVRLPRAC	ARQLARIVCGT
Chicken	LPEPSSLQYLP	RGPVVRLPSAC	ARQLAKIVC AT
Frog	LPQPSALQSLP	RGPVVRLPTAC	ACQLAQIVCGT

Figure 2: The positions of all reported causal variations in *HMGCR*. Blue circles represent variants reported in this study; B: Cross-species comparison of *HMGCR* sequences, showing the conserved nature of the variant residues.

METHOD

Patient recruitment: Biological samples from five unrelated families were collected after obtaining informed consent from the patients or their parents. Index patients were analysed by Genome Sequencing (GS) (families 1&2) or Exome Sequencing (ES) (families 3-5). Sanger sequencing was used for segregation analyses in all available family members.

GS: DNA libraries were prepared using TruSeq Nano DNA High Throughput Library Prep Kit (Illumina®). Libraries were 150nt paired-end sequenced on an Illumina platform to yield a mean coverage depth of 30x for the nuclear genome and at least 1000x for the mitochondrial genome.

ES: Exome libraries were generated using Agilent SureSelect V7 and sequenced on the NovaSeqX Plus with a 150nt paired-end configuration, resulting in an average coverage depth of 100x. Raw reads were aligned to reference genome.

CONCLUSION

This study consolidates the disease-causing role of HMGCR in LGMDR28, illustrates a wide range of symptom onset from birth to the fourth decade, and suggests the value of liver function monitoring in patients diagnosed with LGMDR28.

CONFLICT OF INTEREST STATEMENT: AR, MA and GO are current employees of Arcensus GmbH.

Acknowledgement: This work was made possible by all patients who participated in this study.

References:

^a Yogev *et al*, Proc Natl Acad Sci U S A .2023
^b Morales-Rosado *et al*, Am J Hum Genet. 2023

Aboulfazl Rad, Dr. rer.nat.

Head of Medical Reporting +49 172 2743220 aboulfazl.rad@arcensus-diagnostics.com

Arcensus GmbH Friedrich-Barnewitz-Str. 9 18119 Rostock, Germany www.arcensus-diagnostics.com